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T H E O R Y  O F  S I N G U L A R I T I E S  I N  H E A T  T R A N S F E R  

P R O B L E M S :  R E L A X A T I O N - T Y P E  S O L U T I O N S  

I. B. Krasnyuk UDC 536.24.02 

The possibility of  the existence of  asymptotically periodic pulsed solutions for  hyperbolic heat transfer 

equations with nonlinear boundary conditions is demonstrated. 

The present work has been motivated by the investigation of certain singularities arising in nonlinear 

boundary conditions when heat transfer is described with allowance for heat flux relaxation [1 ]: 

OT 0(2 
PCv Ot = -  Os ' 

(2 + w 0(2 OT R + Ot = - t ~ ' ~ - '  (s ,  t) E / 7 =  [0, l] x , l > 0 ,  (1) 

with the boundary conditions 

Q ( 0 ,  t ) = 0  and T ( l ,  t) = ~o ((2 (l,  t)) (2) 

and the initial conditions 

(2(s ,  0) = Q 0 ( s )  and T ( s ,  0) = T 0 ( s ) .  (3) 

This problem can describe the distribution of temperature in an infinite layer [2 ]; moreover the boundary 
condition on the left is insignificant and therefore it can be taken to be the same as on the right. By substitution 

of unknown functions and scale transformation of variables: Q = 0.5(u + v), T = 0.Sz(u - v), s = Ix, t = (l(w)t-), 

where z and w are constants, this problem is reduced to the form [3 ] 
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where/~ is a certain parameter, with the boundary conditions 

u ( 0 , 7 ) = - v ( 0 , 7 )  and - v ( 1 , 7 ) = f ( u ( 1 , 7 ) )  (5) 

and the initial conditions 

u (x,  0) = h I (x) and v (x,  0) = h 2 (x). (6) 

Here f(-)  is a function assigned implicitly by the relation 
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We note that 

( .  + / )  = r  

, ) 
\ 1s ' 

where 3 is the time of heat flux relaxation, and the remaining notation has the generally accepted meaning. 

At /~ = 0, a sympto t i ca l ly  periodic p iecewise-constant  solut ions witch a f ini te ,  denumerab l e ,  or 

nondenumerable nowhere dense set of points of discontinuity in the period, which are usually called solutions of 
relaxational, preturbulent, and turbulent types, respectively, are typical for problem (4)-(6) [3 ]; the points of 

discontinuity are understood to refer to the set 

3 O = { x ,  t :  lim s u p ( l u t l  , [vt[) = co. 
t-,t 0 

xE[O,1] 

In [ 3 - 6  ] it is shown that in the case of sufficiently small values of/~,/~ > O, the qualitative properties of 

the solutions are preserved, while the set of points 30 is somewhat shifted so that 

lim sup dist (3#, 30) = 0 ,  
/x--,0 

where "dist" is the distance between the corresponding points. 

In the numerical investigation of the problem at hand the "stumbling block" is the relationship from which 

it is necessary to find the function f. In practical problems (see below) this relationship is frequently represented 

by a bilinear polynomial ~ (u ,  y) -- 0, and here we encounter a situation that is the subject of investigation in the 

theory of singularities, namely, we consider the possible bifurcations of the equation [7, p. 45 ] 

, R 1 R 1 g ( u  )1) = o ,  g:  • I ~R1, 

where )l is a parameter. As follows from the implicit function theorem, the equality gu(uo, 20) -- 0 is a necessary 

condition for the solution (u0,)10) of the equation g(u, )1) -- 0 to be a bifurcation point, otherwise a single u E R 1 
will correspond to each ~E R 1. 

Let us consider the function 

2 
g ( u ,  )1) = u - ) 1 u .  

Here u = 0 is the solution of the equation g = 0 for any )1. Moreover, since (dg)o~ = -)1, at )l ;~ 0 the implicit function 

theorem guarantees that u = 0 is the unique solution of the equation g(u, )1) = 0 near u = 0. However, an analysis 

of the set {u, )1: g(u, )1) = 0} shows that the neighborhood of zero, in which this theorem is valid, tends to a point 

when )1 -~ 0 [7 ], i.e., the point (0, 0) is a bifurcation point, that is, branching of solutions occurs. 
Next, we consider the case 

2 
L ( u ,  )1) = - u +)1 

and we assume that we must investigate the asymptotic behavior of the solutions of the equation 

2 
U t = - - U  +)1 .  

It is not hard to show [7, p. 88 ] that stationary branches have the form depicted in Fig. 1, with the point u0 --- 

being stable and the point u0 = --vr'2 - being unstable when 2 > 0; when 2 < 0, there are no singular points. 
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Fig. 1. "Forked" bifurcation. 

Fig. 2. Classification of a boundary condition by "typical" parameters. 

The first example is cited to demonstrate the way in which the theory of singularities "operates," and the 

second example is typical for applications. We also note that in applications the theory of singularities is used only 

for investigating ordinary differential equations or partial differential equations that (for reasons of their own) 

reduce to ordinary equations: in this case it is often overlooked that the theory is of value "by itself," being a branch 

of algebraic topology that is concerned with problems of the construction of surfaces for systems of equations. 

It turns out that in the boundary-value problem (1)-(3) the methods of the theory of singularities can be 

applied "directly." In fact, suppose that on the boundary 

Q =  qinc - e ( T )  T k , k > 4 , 

where qinc is an incident radiation flux; e (-) is a certain function. Usually, the form of e (.) is unknown, and one 

has to find it experimentally; therefore we assume 

( r )  r*  = % + , lr + 2 + . . . ,  

where ao, al, a2 are unknown coefficients. Then, according to the above-indicated replacement of variables 

"~(U + V) = q inc- -  e ( u - -  v) z U  2 v , k - >  4 ,  

1 z ( u - v ) -  a 2 ( u - v )  2 +  
~- (U + V) = qinc -- a0 -- a l  "2 " " ,  

u + v = - A  0 - A  1 ( u -  v ) - A  2 ( u -  v) 2 - . . . ,  

where 

- A 0 = 2qin c - 2a_ 0 ; 

2 
z 

A 1 = a l z ;  A 2 = a  2 - ~ ;  

def 
t/)----- (U + V) + A 0 + a I (u - v) + A  2 ( t t -  v) 2 + . . .  

We denote ~ = ~ - A  0, consider the image ~P = (u + v) + A1 (u - v) + A2(u  - v) 2 + .... and show that the 

relation alp(u, v) = 0 (v - 2 )  is equivalent to a "forked" bifurcation (Fig. 1). As is known [7 ], the singularity at the 

point (0, 0) is determined by the equations 
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= cP u = O ; CPuu ~ O ; r r 0 

and is equivalent to the normal form •  2 • )l for a certain choice of signs, to be determined below. In fact 
2% / X  

~ u  ( 0 ,  0 )  = 1 + A 1 , A 1 = - 1, ~u  (0,  0) = 0 ,  

~ u u ( O ,  0 ) = 2 A  2 ; ~ 0 ,  A 2 r  

~ v ( 0 ,  0 ) =  1 - A  1 = 2 ~ 0 ,  

i.e., a nondegenerate change of variables should exist such that 

eq _ v2 
~ ( u ,  v) = + •  

Let us select A2 < 0; then ~uv(0, 0) < 0, and since ~v(0, 0) > 0 the normal form appears as (u, v) = u 2 - v .  

Note that the universal deformation of this normal form is 

3 2 
G ( u ,  v ,  a )  = v - vu + a I + azU . 

As shown above, in order that the boundary condition that connects the temperature and the heat flux be reduced 

to the simplest normal form, it is sufficient to assume that 

e (T)  T k =  Ao - T + A2 T 2 ,  k >_ 4 ,  

where A0 and A 2 are unknown coefficients. In this case 

2 
u - v = ~ - A  0 , 

and consequently, for system (1) we can consider the boundary conditions 

2 A0 s=l u = - V l s = 0  and O = u  - v +  = 0 .  

Performing integration along the characteristics, problem (4)-(6) is reduced to the investigation of a 

difference equation with a continuous time [3 ]: 

u ( 1 , 7 + 2 ) = u ( 0 , 7 +  t ) = - v ( 0 , 7 +  I ) =  

= - v ( 1 , 7 )  -- - u 2 (1,  u  - A 0 , 

i.e., 

u ( 1 , 7 + 2 ) = - u  2 ( 1 , 7 ) - A  0. (7) 

The behavior of the solutions of Eq. (7) for ?'-'- r is known [3 ] and is characterized by the fact that for a 

nonempty class of initial functions prescribed over the interval [0, 2) asymptotically periodic piecewise-constant 

solutions exist that take values from P+, where P+ is the set of attracting fixed points of the mapping f. Note that 

the reduction to the difference equation is possible only at/~ -- 0, while for/~ > 0 a complex integro-difference 

equation is obtained [3 ]. For example, there is a denumerable set of parameters /~n = - A o , n  > 0 for which 
solutions of (7) experience bifurcations of the doubling of periods so that the numberof  fluctuations on any interval 

[t, t + 2) increases in exponential or power-like fashion as t --> oo [3 ]. 
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Fig. 3. Limiting distribution of temperature: 1) for At > 0; 2) for At = 0. 

We note that qinc > ao, where a0 plays the role of a "damper," and, finally, we note that in deformation 

(the form G) it is possible to assume that ct 1 = A0, ct 2 = A2, where Ctl, a 2 E R - ,  and the corresponding deformations 

of the normal form G are known [7 ] (see Fig. 2). These deformations in the boundary condition may arise either 

as perturbations (when carrying out an experiment) or because of the fact that in the statement of the model 

problem some additional parameters were not taken into account (a detailed discussion of all the possibilities can 

be found in [7 ]). Here, similarly to the foregoing, we obtain difference equations of form (7), where the image 

will be described by one of the curves 1-4.  The parabola-type curves do not give new solutions; the curves in 

regions 2, 1 give relaxation-type fluctuations (Fig. 3), while curves 3, 4 give preturbulent-type fluctuations, i .e,  

the set of points of discontinuity of the limiting function is denumerable [3 ]. 

Finally, with our choice, 

a 0 1 a 2 
(T) = r + r  k >_ 4, 

and, moreover, it is possible to determine the set of bifurcation parameters a0 and a2 for which the above-indicated 

types of solutions are possible. If we are interested a priori in the representation 

e (T) T k =  A O + A 1T + ... + Ak Tk + . . . .  

then it is possible to reduce the boundary condition to other types of normal forms whose classification is known 

[7 ] and, thus, to avoid as much as possible complex numerical calculations in studying heat transfer problems. 

N O T A T I O N  

Q, heat flux; T, temperature; x, heat conduction coefficient; s, spatial coordinate; t, time; 3, time heat flux 

relaxation. 
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